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Abstract—Fiber pull-out is one of the fracture features of fiber-reinforced ceramic matrix
composites. The onset of this mechanism is predicted by using Continuum Damage Mechanics, and
corresponds to a localization of the deformations. After deriving two damage models from a uniaxial
bundle approach. different contigurations are analysed through analytical and aumerical (F.E.
caleulations) methods. For one model some very simple criteria can be derived, whereas for the
sceond one none of these criterta can be derived and the general criterion of localization has to be
used.

[. INTRODUCTION

The aim of this paper is to study the failure of fiber-reinforced ceramic-matrix composites.
One of the features of their behavior is fiber pull-out due to fiber breaking. The occurrence
of this mechanism is assumed to be described by the appearance of a macro-crack and will
be described by a localization of the deformations. The initiation of macro-cracks in a
structure during service often constitutes the carly stage of the final tailure of the structure.
Starting from a material that is assumed to be free from any initial defect, the initiation of
muacro-cracks can be predicted using Continuum Damage Mechanics. This approach has
successlully been used for ductile materials (Bitlardon and Doghri, 19894.b; Doghri, 1989).
The initiation stage is considered as the onset of w surface across which the velocity gradient
is discontinuous. Under small deformations assumption, this phenomenon is mainly driven
by the diamage mechanism that causes strain-softening. For ceramic-matrix composites, the
damage mechanism is related to fiber breaking.

Stationary wuves were studied by Hadamard (1903) in elasticity, by Hill (1962) and
Mandel (1962) in clasto-plasticity. Rice (1976) related the localization of plastic shear bands
1o jumps of the velocity gradient, Recently, Borr¢ and Maier (1989) have given necessary
and sutlicient conditions for the onset of modes inside the body, which extended the results
given by Rice (1976). Rice and Rudnicki (1980) and Rudnicki and Rice (1975).

This type of approach will also be used in the study of fiber-reinforced composites.
Although localization can be studied at the scale of fibers bonded to a matrix through an
interface (Benallal er al., 1991), i.c. at a micro-level, localization can also be analysed at a
meso-level, where the material is assumed to be homogeneous. Continuum Damage Mech-
anics, which represents o local approach to fracture, constitutes an efficient tool for this
purpose. The progressive deterioration of the material is modeled by an internal variable
defined at the meso-fevel. This variable is called danage. The damage state and the evolution
of this variable is obtained through a uniaxial study bused on fiber breaking (Coleman,
1958). A 2-D plane stress analysis is performed based on an extended model. The loss of
uniqueness and the localization are studied for shear free states. A criterion referring to a
critical value of the damage can describe the localization, which constitutes an objective
criterion. from a design point of view.

This approach is also used to study a spinning disc made of a fiber-reinforced ceramic-
matrix composile. The same criteria are implemented and studied through Finite Element
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computations. A mesh dependence study is performed and a comparison is made with
realistic situations.

2. LOCALIZATION AND LOSS OF UNIQUENESS

The failure at a meso-level, i.e. initiation of a macro-crack. is defined as the bifurcation
of the rate problem in certain modes. viz. the appearance of a surface across which the
velocity gradient is discontinuous (Billardon and Doghri. 1989a). This phenomenon is
referred to as localization, and corresponds to the failure of the ellipticity condition (Benallal
et al.. 1991). The condition of localization can also be compared to the loss of uniqueness
of the rate problem.

Under small strain assumption and in efasticity coupled with damage, the behavior of
a material is assumed to be described by the following picce-wise linear rate constitutive
law:

E:¢ if D=0,

H:¢ if D#£0,

where & and ¢ respectively denote the stress and strain rates, E and H are fourth rank
tensors, E is assumed to be positive definite, and D is cither a single damage variable or a
sct of damage variables.

Localization occurs inside the body, if and only if (Borr¢ and Maier, 1989 Benallal ¢f
al., 1991)

Det(n-H-n) = 0. forany vector n # 0 und at any point inside a structure Q. (2)

This criterion corresponds to the faiture of the ellipicity condition of the rate cquilibrium
cquation {sce Appendix A): it can also be used as an indicator of the locat failure of the
material, i.e. at a meso-scale (Billardon and Doghri, 1989a).

Also, any loss of uniqueness, considered as bifurcation of the rate boundary value
problem, is excluded as long us the operator

H, = {H+HDH 3

is strictly positive definite everywhere within the structure. This condition is equivalent to
the condition of hardening

G:¢>0. ‘ 4)

In this study, the quantity that defines loss of uniquencess and localization is the linear
tangent modulus H. In the following, we analyse loss of uniquencss and loss of ellipticity
(i.c. localization) for statcs when

(3)

These particular states only are considered, since we will deal with axisymmetric calcu-
lations, which are shear free. These states lead to a tangent modulus that takes the form
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Hy Hyps 0
H=|H.,, Hi.a 0 . (6)
0 0  Hin

For problems under hypothesis (5). the non-vanishing components of vector n are n, and
n,, and the matrix A = n-H - n reduces to (Ortiz et al.. 1987)

_[nl:Hllll+n§HIZIl ”u”:(HIZI:‘*‘Hu::):I )

mny(Hyzi+Hy)  niHo o +niHz

If we rewrite (n,,n,) = (cos 8, sin §), X = tan* 0, then the localization condition is to find
real positive roots of the following equation:

aX+bhX+c=0 8)

with
a=H:H 32, (9a)
b=Hy\\Hypy—Hy 2l =2l 2y = oy H s (9b)
C=fl|2|2’1||“. (()C)

If real positive roots are found, then the localization direction is perpendicular to the vector
(n,,n,,0) = (cos 0,sin 0,0), characterized by the angle 0 (Fig. 1).

The values of H,,,\, H3313, H\ 133, Hysy, and H 55 are model-dependent and specific
models are now developed.

3. UNIAXIAL STUDY

This section is concerned with the development of a single damage variable model for
tensile behavior of unidirectional fiber-reinforced ceramic-matrix composites. A schematic

: X,
M n,

Fig. 1. Localization mode.
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Fig. 2. Schematic untaxial stress-strain curve {after Hayhurst e of. (1988)].

stress-strain diagram is shown in Fig. 2 for such a specimen. The micro-structural phenom-
ena responsible for the features of curve ABCDF are now discussed. On initial loading
from point A to B of Fig. 2 the composite behaves as a virgin, e undamaged. elastic
material with modulus £. Further loading from poeint B to C causes cracking of the matrix.
The cracks traverse the entire load-bearing section within the homogencously stressed
region (Hayhurst ef «f., 1988), Further loading along CDF (Fig. 2) involves further
development of matrix cracks, which involves two processes. First the process of fiber
debond, both at the front of the crack and n its wake, which is necessary to cause the
stresses 1o redistribute. The second process is fiber fatdure, which precedes the process of
fiber pull-out. It is the fatter, predominantly trreversible process, which absorbs considerable
energy and is responsible for giving such materials their toughness and duetility (Hayhurst
et al., 1988).

The characteristics of fiber fuilure are determined by a statistical distribution of fiber
strength (Coleman, 1958). This single mechanism is the endy one constdered in this study.
Future development can be carricd out by modeling the fiber puli-out mechunism.

The model is based upon the assumption that the nominal stress applicd to a bundle
of fibers in parallel can be expressed in terms of a damage variable, denoted by D = r/n,
where r is the number of failed fibers and # is the total number contained within the load-
bearing cross-section. This type of approach has been applied to perfectly brittle fiber
systems {Krajeinovic and Silva, 1982 Hult and Travimcek, 1983). It is shown that the
nominal applicd stress o is related to the uniaxial strain « by

6= FE(l~D) = Fr. (10

where £ is the Young's modulus of cach non-broken fiber and £ the Young's modulus of
the damaged bundle. If the nominal stress is the total current load divided by the total
initial fiber arca, then the average stress in the unfailed fibers is

j= T
= tah

This later expression refers to the concept of cffective stress (Rabotnov, 1963 Lemaitre
and Chaboche, 1990). Although the nominal stress does notalways increase with the applied
strain £, the stress 4 in the unfailed fibers doces increase whatever the applied strain &, We
assume that the probuability of fiber survival at a stress 4 is given by a Weibull distribution:
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) 2 1= F6) = l—exo| = [ ZY 5
G(G)=1-F(5) = l—exp % . (12)

mam

where m is the so-called Weibull modulus. o,, is a scale parameter and V,, is a reference
volume (for instance a specimen volume for which 7 and o, were identified). Therefore the
ratio r/n characterized by damage variable D is

rin =D = G(G). (13)

This definition is consistent with the bounded values of D for which D = 0 for no failed
fiber and D = | for complete failure of all fibers.
The damage is therefore related to the nominal stress through relation (11):

D= l—exp[—%{“—_%&:}m], if £>0 and &> 0. (14)
or to the uniaxial corresponding strain by
D=l—exp[—£(;—)’"]. if e>0 and £>0, (15a)
with
by = 0,/ E. (15b)

The relationship between the nominal stress o and « can be cither implicit

V e
g =L exp [— % {(l‘_{;));“'} }, if ¢>0 and £>0, (I5C)
or explicit
V il
6=EI:CXP[—H{;—} ] if £&>0 and £>0, (15d)

The peak in the stress-strain plane (a,£) is given by (Fig. 3)

1.0

08 J/AR
0.6 U!Yc -0

a/c,

v \

€/€om

Fig. 3. Normalized stress (a/04) vs normalized strain (£/rg) when m = 4,
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D=D, =1-exp(—1m). (16)

It can be noticed that the critical value of the damage is independent of volume V oof a
considered structure Q. Conversely, the maximal nominal stress o depends upon volume
V.

V Im
Oom = a,,,(;nv';/) exp (—t m). (17)

The higher the volume, the lower the maximal nominal stress (that is. the strength of the
structure). This result agrees with experiments and is known as a rolume effect (Weibull,
1939a.b; Coleman, 1958 ; Kadlecek and Spetla, 1967 ; Davies. 1973 : Katamaya and Hattori,
1982). The critical value of damage. D.. is on/y related to the Weibull parameter m by (16)
and is therefore a material dependent parameter. Conversely, o, depends upon the volume
of the considered structure, so that it is not a material parameter.

Finally, as it has been mentioned above, this model does not consider fiber pull-out.
Thus this model constitutes a lower bound estimate after the maximal nominal stress is
reached, for a strain-controlled test. Indeed. the pull-out mechanism often delays the
decrease of the curve (a.¢) (Hayhurst er al., 1988). If the test is stress-controlled, then the
point for which = g,y constitutes the ultimate stable point.

4. 2-D STUDY

This section deals with the study of a 2-D model extending the ideas of the previous
section. The fibers are assumed to be parallel to the 2-direction. In clasticity, under the
plane stress hypothesis, with the small strain assumption, the relationship between stresses
and strains is given by

Ly I/E[ —\':I/I;:: 0 T
£ | = —vi/E, I/E, 0 gy | (18)
€2 0 0 172G 5 || 5y

When fiber breaking in the 2-direction is considered, the dumage state is described by
damaged clastic constants £, E,, 7,1, ¥2,, G, instcad of £, E,, vi3, va,. G5, respectively.
The Young's modulus £, is no longer constant but depends upon the degradation of the
fibers characterized by D, to become £, = E,(1 —D,): it is a straightforward extension of
relation (10). Since pulling in the I-direction has no effect on the strains in the 2-direction,
7, is constant and equals v,,. Finally we assume that £, = £, (no effect of the damage D
in the I-direction) and that G, = G,, (the shear propertics are slightly altered by fiber
failure). We also suppose that the material is hyperelastic so that

-

12

e 1o

(19)

o)
oy

f
2 |
It can thercfore be noticed that ¥, = v, (1 = D,) and if D, = 0 then the behavior is purely
clastic and is described by relation (18). This model has a general form very close to the
modcl proposed by Allix er al. (1985). However, the damage evolution is gencrally different.
The relationships between strains and stresses arc given by (k = £./E))

= kI —vi:(1=DA]

- ,_EZ(' ) . Vo 20b
02 = l_;mr:bzﬁ('-::+‘ 12601)- (20b)

Ti [‘:ll+"!2(|‘—D:)k“::]. (20a)
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As mentioned in Section 2, the damage state of fibers in the 2-direction, D,, can be
related to the stress or strain state either through an implicit relationship for model No. 1
(D:)):

} G- i
=1-— -_— i 29 ."‘V 2
D, =1 exp|: = {(l —D:I)Um} ] if €,>0 and é,, >0, (20¢)

or through an explicit refationship for model No. 2 (D;,):

: V je.. ("
D;: = |—-exp|:— r {Z--} ]. if €12 > 0 and £ > 0. (20d)

Both models describe the material behavior when subjected to uniaxial tension. However
the models give different predictions for multiaxial loading states. It is worth noting that
the stress 7,, depends upon the fiber volume fraction. whereas the strain ¢, is stillindependent
of the fiber volume fraction.

4.1. Model No. |
For model No. | the tangent operator takes the form:

FoFF,
,I = F — -—:__-,‘_. 2 )
tT T R, (21a)
F,
Ilyq,,=—7~7,,,“,, . 2
IRRR B o o8 (21b)
Hyao = Hyy o= v 0o, 2le)
Hyys =2G|3. Q21d)

where the explicit expressions for F, are given in Appendix B,

Also, it cun be noticed that if D, = D, then F; tends to infinity. Therclore #,,,,
Hyyyy and Hyays vanish simultancously and #,,,,, H,.,, are strictly positive. This point
corresponds to the loss of unigqueness and to a localization with 0 = n/2 (i.c. perpendicular
to the fiber direction). It can be proven that D, = D, (viz. Hiy5, =0 and therefore
Hpyy = Hyyyy = 0) constitutes a necessary and sufficient condition for loss of uniqueness
and localization. An initiation criterion can therefore be (Fig. 4)

(B y= DD

Localization

B

No B
DAMAGE

Fig. 4. Normalized damage at loss of uniqueness (D, /D,) and localization (D /D.) vs strain ratio
x for mode! No. 1.



3228 F. HILD et al.

G,/ Ogum

Localization

/ 1

/ Matrix Rupture

i1/ Com

Fig. 5. Normalized stress level at loss of uniqueness and localization in the fiber direction (0::/0um)
against the corresponding stress perpendicular to the fiber dircction (o, /).

DZI = I)g (22&\)

Since the condition (22a) implies that a;; [see relation (20¢)] is constant and equals gy,
another criterion may be (Fig. 5)

022 = Gym. (22b)

It can also be shown that the criterion (22b) can be expressed in terms of the strain energy
release rate density ¥ (Lemaitre and Chaboche, 1990), reaching a critical value Y, :

1 ”&M
Y=V, = L 22¢
<=2 B (1-D,)? (22¢)

where Y = p(Qy /0Dy, pr (e, D)) is the strain energy density, which is a function of the
Cauchy’s stress tensor @, and the dumage variable D, p denotes the material density, here
assumed to be constant. The strain energy density py takes the form

Lo Via V:u) ai <—‘(7::_>: {22)° 9
""’"2[&“(1:1*13: ettt n YEa-on] Y

where () denotes McCuauley's brackets: (- > = () +]-]].
Morcover, criterion (22b) can be rewritten in terms of &,, (Fig. 6) by using relation
(20b) and yields

g2l +av2) = &y, (22¢)

where &, corresponds to the localization strain when a2 = 0.

The localization angle, as expected, is equal to #/2 (viz. a localization modce per-
peadicular to the fiber direction) whatever the strain ratio « (Fig. 7).

It is worth noting that if the failure of the matrix is considered, then localization cannot
always occur : there exists another limit given by, for instance, the criterion o, = 6y, where
ay is the strength of the matrix (sce Fig. ) in the transverse direction.

Knowing the analytical results, it is interesting to study the numerical sensitivity of the
detection of the localization point (and therefore the loss of uniqueness as well). The
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822/ €0M

Localization

Fig. 6. Loss of uniqueness and localization in (e,—¢;) plane.

convergenee in terms of the damage is rapid compared to the convergence in terms of the
dircction of localization (Fig. 8(a)). This phenomenon can also be observed in Fig. 8(b).
To get accurate information in terms of the damage at localization, direction of localization
and stress at localization, it is necessary to be as close as possible to the actual localization
state. This trend has also been observed when using a F.E.M. code to compute some more
complicated situations. These trends are very close to observations drawn from the study
of buckling where the detection also has to be as accurate as possible.

In summary, model No. 1 feads to some very simple results. First, loss of uniqueness
and localization occur simultancously. Sccond, some very simple criteria (22) can be derived
from criteria (2) and (3), and show that the relevant parameters are Weibull's parameter
mand Poisson’s ratio v . Third, the results are independent of the Young's modulus ratio
k = I,/ FE,. Fourth, whatever the strain ratio x, the direction of localization is constant and
perpendiculir to the fiber direction. This model gives the same results as those found in a
uniaxial approach and constitutes a straightforward generalization to 2-D cases. From a

Localization

w

Fig. 7. Localization direction () vs strain ratio ().
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Fig. 8 (a). Damage at localization (D) and at loss of uniqueness (D). direction of localization
(0) for different increments of deformation (A¢,,) whena = 0.
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Fig. 8 (b). Damage at localization (D), angle at localization (0) and normalized stress at localization
(@ /) v normalized strain in the fiber direction (&,,/e,) whena = 0.

numerical standpoint, it is important to be as closc as possible to the localization point to

gel accurite information,

4.2, Model No. 2
The tangent operator for model No. 2 takes the form

Hy . =F,

Hissy = Fo—FF,, (23b)
Hin=Fy=FLFy,

Hys = Fy, (23d)
Hiy2 =2G,,,

where the explicit expressions for F, are given in Appendix B.

[t may be noticed that the tangent operator does not possess the same remarkable
propertics as those exhibited by model No. 1. In particular, the previous necessary and
sufficient conditions do not apply. Indced. the relationship between the damage variable
D, of model No. | and the damage variable D,, of model No. 2 is given by using relations

(20):
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- :1 —D~ \"
D:: = l-cxP[<l_vlli-(—;v|,—.l)) ln(‘—D:|)]. if €12 > 0 and é:: > 0. (24)

On the other hand, the strain energy density takes the form for model No. 2:

1 Ufl Viz V:|> iz (“0::>2 <U:z>: ]
1= - e 32 2
o 2[51 (El YESeYe, YR TEa-pw) P

and can be rewritten in terms of D., by using relation (24):

1| o} vz Vs 63, —Fa.)?
Plll;-—- _ﬂ_( "+_i>o»”o-n+__';+<_“2.

2| E, E,  E; G, E,
+ : ,(f":;)')“ . (26)
= Vil =Dk
E:exp[(——ﬁ_?—) ln(l—D:I)]

From an energetic viewpoint, the two models are different as shown in Fig. 9 for a uniaxial
case (g,, = g,; = 0). For modcl No. |, the strain energy density only depends upon Dy,
whereas for model No. 2, the strain energy density depends upon D,; but also upon &, «
and v,,. Therefore the two models are completely different.

This difference can also be highlighted by the study of localization and loss of unique-
ness. Whereas the loss of uniqueness and the localization can be characterized by very
simple criteria for modcl No. 1, it is no longer the case for model No. 2. First, the results
in terms of damage at localization D,y (Fig. 10), of strain £,, (Fig. 11) and of stress o4,
(Fig. 12) are no longer independent of the strain ratio a. Furthermore, the quantitics D,,,
€12 and a1, at localization (Fig. 13) depend upon the Young's moduli ratio &. Instead of
having onc localization angle (model No. 1), model No. 2 leads to two localization angles,
which vary with @ and & (Fig. 14). The same criteria as those used for model No. | do not
apply and no straightforward criterion scems to apply.

Although derived from the sume uniaxial analysis, models No. | and No. 2 lead to
different results when applied under plane stress conditions. Whereas loss of uniqueness
and localization can very simply be described for model No. |, model No. 2 does not admit
such simple descriptions. Moreover, loss of unigqueness and localization do not occur for

1.75
1.50 - #2,k=1,a=-2
1.25 —_-— #2 k=10,a=-25
#1
vy, 100  Wwk=la=-l
oM o — #k=1a=0
0.75 < Wk=la=0
) ~—— #2.k=10,a=1
0.50 —
0.25 —
0.00 ]
000 025 050 075 1.00
GZZIGOM

Fig. 9. Normalized strain energy vs normalized stress in the fiber direction for model No. | and
model No. 2.
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Fig. 12, Stress in the fiber direction at localization vs striin ratio 2 for model No. | and model

No, 2.

the samc load level. Nevertheless the two load levels are very close together (as will be
shown in the next section).

These results show that a straightforward generalization from unidimensional models
to two-dimensional problems can lead to different types of results. A way to choose the
most realistic one is to perform experiments.
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Fig. 13. Strain, stress in the fiber direction and damage at localization for model No. 2 (k = 1.7)
for different strain ratios ().
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Fig. 14, Localization angle vs strain ratio « for model No. | and model No. 2 (k4 = 1. 7).

5. F.EM. ANALYSIS: SPINNING DISC

A problem that is given special attention is the case of a circular disc made out of a
fiber composite material. The analysis of this problem is performed not only due to its
significant practical importance in, for example, turbines, but also due to the presence of a
non-homogeneous stress state, a feature that distinguishes this problem from the 2-D study
performed above.

The geometry of the problem is shown in Fig. 15. Here w represents the angular
rotation speed, with dimension rad s™'. The outer boundary of the disc, r = «, is assumed
to be frec from kinematic constraints and accordingly the loading can be considered here
as stress controlled.

In the present setting, the stress state is axisymmetric, at least up to the point where
localization occurs, and hence a cylindrical coordinate system is introduced in Fig. 15. If it
is assumed that the fibers are oriented in the circumferential direction and coordinates x,
and x, in the previous section are replaced with r and ¢ respectively, then the constitutive
cquations become

— Ew
T k[1=vi(1—D,)k]
E,(1-D,)

==l vk, 27b
To = TV I(T =D )k o+t (276)

o, [e, + v, (1 = D,)ke,], (27a)
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Fig. 15. The circular disc.

in obvious notations. It should be remembered that no shear stress g, is present due to
axisymmetry. The expression for the damage parameter D, is in this problem given by

, a, m 3 ‘
D, =1~-exp [ - . {(l D )(".,.} ] it e, >0 and £, >0 (28a)

oy

for model No. | and by

r : YA
D,y =1—cexp [~ <{"’> J ir e, >0 and £, >0 (28b)

r m “m

for model No. 2. In relations (28), r,, is a4 material constant representing the volume
dependence of the problem, while all the other parameters are defined carlier.

To describe completely the axisymmetric boundary value problem, small strain kin-
ematics and cquilibrium equations also have to be introduced. At this stage, it proved
impossible to derive a closed-form solution for the stress state and for the damage variable.
Instead the problem was solved using the finite element method. Constitutive relations (27)
and (28) were implemented into a standard finite clement code ABAQUS (1989). and a
solution was sought by discretizing the problem using 2-node axisymmetric shell clements,
Since the lincur tangent modulus H also had to be implemented into the finite element code,
the load, or angular rotation speed, required for loss of uniquencess and localization could
be conveniently calculated using ABAQUS through « UMAT routine. The conditions for
these phenomenai to occur were previously discussed and will not be dwelt upon further in
this section.

[t should be noted that due to the non-explicit expression for the damage parameter
given in (28a) an iterative procedure had to be outlined to determine the damage state
characterized by D, every time the caleulated strain ficld did change at a certain Gauss
point. This was done by using a standard bisection method and should not in any way be
a problem regarding the accuracy of the solution.

The finite clement procedure, as described, was checked by analysing the problem of
a thin walled pressure vessel and a thin rotating ring. Then, the stress state can be derived
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in a closed form through the equilibrium equations and comparisons between the analytical
and the finite element results were possible. Without going into details, excellent agreement
was found between the two solutions. a fact that gives confidence in the numerical procedure
outlined above.

A test of mesh dependence of the numerical results is also performed. The number of
elements proves to have a very weak influence on the solution and satisfactory results for
the stress and state variable can be obtained by modeling the disc with only 20 elements.

Before focusing attention on explicit results, one should first mention that the non-
homogeneity of the stress field in this axisymmetric problem did not in any way change
the important features of the mechanical (damage) behavior. All the conclusions drawn in
the 2-D study are essentially confirmed. Therefore, it seems appropriate merely to comment
on some numerical results derived from the finite element computations.

In Fig. 16, the engineering stress is plotted as a function of the strain at the point
within the rotating disc where loss of uniqueness and localization first occur. The material
analysed herein is a ceramic-matrix composite defined in Appendix C, and the geometry of
the disc is chosen with practical applications in mind, namely ¢ = 0.3 m and & = 0.0l m.
For model No. 1, localization and loss of uniqueness occur at the same value of w and
where r has the approximate value 0.248 m, Other critical values of important parameters
are

pn’ = 0.585980 10" kgm ~*s 7, (29a)
£
D, =0.221199, (29b)

where especially the vatue of D, gives further confidence in the numerical procedure since
the critical value of the damage was previously proven [sce relations (16) and (22a) when
m=4d]tobe l—exp(=1/4) =0.2211992 ...

The direction of localization coincides with the direction perpendicular to the fiber
dircction, as already shown analytically. To find the actual value of the localization direc-
tion, the point at localization has to be determined with high accuracy, as mentioned in the
2-D study.

Regarding model No. 2, the carlier finding that loss of uniqueness occurs slightly before
localization is confirmed by the finite clement computation. Yet, the analysis shows that
both events take place at the same point, i.c. for the sume value of the radius (r = 0.263
m). Critical values as regards loss of uniqueness iare

300

200 g
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0.00 005 0.10 0.15 020 025
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Fig. 16. Engincering stress o, as a function of strain ¢, at the point on the circular disc where loss

of uniqueness and localization occur, E, = 20 GPu, E, = 140 GPa, v, = 0.02143, G,, = 13.0 GPa,

m=4d,a, =453 MPua,r, =0.002m.a=03m. A =00Im.( ) damage model No.  (r = 0.248

m). (- - -) damage model No. 2 (r = 0.263), (*) point on the stress-strain curve indicating that loss
of uniqueness and localization occurred.




3236 F. HiLp et dl.

pw™ =0.59712010"kgm s 3, (30a)

D,, =0.217816, (30b)
and for localization

pw® =0.59712210'kgm s~ 7, (30¢)

D, =0217822. (30d)

For this model, the direction of localization formed an approximate angle + 14” with the
r-axis, which implies that the axisymmetric analysis is no longer valid after localization.

In Fig. 17, the stress field is plotted as a function of the radial coordinate r at pw* = 0.55
10'" kg m~* s~ 7, that is just before localization. A comparison is made with an elastic
solution where the effect of damage is ignored. As might be expected, the introduction of
damage reduces the maximum stress acting within the disc.

Though no methodical attempt was made to analyse the stability behavior of the disc.
some calculations were performed with model No. 1, under axisymmetric conditions, in the
“post localization™ region. In this case. the material behavior is assumed still to be described
by constitutive equations (27) and (28). This computation constitutes the so-called homo-
gencous response of the structure since no new constitutive law is introduced in the local-
ization band. It can be noticed that no fiber pull-out effects are considered after localization.
The finite clement results can therefore be described as a lower bound to the real solution.
The caleulations show that the additional load, represented by pe’, required for instability
proves to be only a few percent of the localization load. This finding is significant from a
practical point of view since the load required for loss of uniqueness and localization is very
close to load levels reached during service in turbines for example. [t may be remembered,
as mentioned carlier, that a phenomenon such as fiber pull-out may significantly increase
the load-carrying capacity of a structure, as shown by Hayhurst ef af. (1988).

6. CONCLUSIONS
Using a one-dimensional study of fiber breaking modeled by a single damage variable,
two models are derived. Both of them are then generalized to a 2-D plane stress analysis, and
differ from an encrgetic point of view. Whereas model No. | constitutes a straightforward

250 e G T

200 .
/ 4

150 i~
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100 f‘r

0.0 0.1 0.2 0.3
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Fig. 17. Engincering stress 4, as a function of the radial coordinale r, E, = 20 GPa. E, = 140 GPa,

v, = 002143, G,, = 13.0 GPu, m =4, 7, = 1453 MPa, 7, =0.002 m. a =03 m. h =001 m,

pn* =05510""kgm~*s3 ( ) damage model No. [, (---) damage model No. 2, (---+-)
linear clastic model when D, = 0.




Localization in fiber-reinforced composites 3237

generalization of the elementary study. model No. 2 exhibits different features. Indeed, loss
of uniqueness and localization can be described by some very simple criteria referring to
Continuum Damage Mechanics for model No. 1. Conversely, these simple criteria do not
apply for model No. 2. This study shows. if necessary. that an identification that seems to
be equivalent in an unidimensional analysis can differ significantly in a two-dimensional
study. An experimental analysis may decide which model is closer to reality, especially the
prediction of the direction of localization.

The conclusions drawa from the 2-D study are essentially confirmed by the finite
element analysis of a spinning disc. This resuit is in itself interesting since it shows that
the important features regarding loss of uniqueness and localization in fiber reinforced
composites are independent of whether or not a homogeneous shear free stress field is
present.

The finite element results also show that loss of uniqueness and localization occur very
close to load levels used in service : a finding that underlines the importance of giving due
consideration to such failure modes, also at the manufacturing stage.
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APPENDIX A

8, = Huuéu‘
X}=Xx*-X",
[u] = 0.
[e,n]=0.
Maxwell's compatibility equation [¢,] = ![gn, +ng,].
0 = [dl/nll = [6111"/ = [Hrrklékl]nl'
If we assume there is a discontinuity across the surfuce characterized by n, then H* = H~
(Hoakuln, = H o ltun, = H, o[ Hgn, +a,80]n, = 0.

Since we assume that A has the minor symmetries H, ., = H,,, = H, 4.

[ Hum g = 0.

This equality has to be satisfied for g different from zero. This imposes that for the matrix n+ H - n to be singular

Det(nH-n) = 0.

APPENDIX B

k=,
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F, = E:
TR =vh(I =Dk
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Fooe I’«.:Vl:(l"['):)”
v (L=Dk”

PR EITRLED)

(1=v,(1 =Dyk)*
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"\ PTG L
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APPENDIX C

Material parameters for the ceramic-matrix liber composite analysed in the finite clement calculations are:

E, =20 GPa,
E, = 140 GPa,
G, = 13GPa,
viy = 0.0214,
n =4,
a, = 1453 GPa,
ry = 0,002 m.



